Modelling the Impacts of Hydrogen–Methane Blend Fuels on a Stationary Power Generation Engine

Author:

Haghighi Kimia1,McTaggart-Cowan Gordon P.1ORCID

Affiliation:

1. School of Sustainable Energy Engineering, Simon Fraser University, Surrey, BC V3T 0N1, Canada

Abstract

To reduce greenhouse gas emissions from natural gas use, utilities are investigating the potential of adding hydrogen to their distribution grids. This will reduce the carbon dioxide emissions from grid-connected engines used for stationary power generation, and it may also impact their power output and efficiency. Promisingly, hydrogen and natural gas mixtures have shown encouraging results regarding engine power output, pollutant emissions, and thermal efficiency in well-controlled on-road vehicle applications. This work investigates the effects of adding hydrogen to the natural gas fuel for a lean-burn spark-ignited four-stroke, 8.9 liter eight-cylinder naturally aspirated engine used in a commercial stationary power generation application via an engine model developed in the GT-SUITETM modelling environment. The model was validated for fuel consumption, air flow, and exhaust temperature at two operating modes. The focus of the work was to assess the sensitivity of the engine’s power output, brake thermal efficiency, and pollutant emissions to blends of methane with 0–30% (by volume) hydrogen. Without adjusting for the change in fuel energy, the engine power output dropped by approximately 23% when methane was mixed with 30% by volume hydrogen. It was found that increasing the fueling rate to maintain a constant equivalence ratio prevented this drop in power and reduced carbon dioxide emissions by almost 4.5%. In addition, optimizing the spark timing could partially offset the increases in in-cylinder burned and unburned gas temperatures and in-cylinder pressures that resulted from the faster combustion rates when hydrogen was added to the natural gas. Understanding the effect of fuel change in existing systems can provide insight on utilizing hydrogen and natural gas mixtures as the primary fuel without the need for major changes in the engine.

Funder

Mitacs Accelerate

Transition Accelerator

Enbala Power Networks

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference36 articles.

1. Frequently Asked Questions (FAQs)—U.S (2022, October 25). Energy Information Administration (EIA), Available online: https://www.eia.gov/tools/faqs/index.php.

2. (2022, October 25). Natural Gas and the Environment NaturalGas.org. Available online: http://naturalgas.org/environment/naturalgas/.

3. A review of hydrogen-enriched compressed natural gas (HCNG)-fuel in diesel engines;Arat;J. MacroTrends Energy Sustain.,2013

4. Experimental investigations of combustion, performance and emission characteristics of a hydrogen enriched natural gas fuelled prototype spark ignition engine;Verma;Fuel,2016

5. (2023, January 19). Accelerating Clean Hydrogen Initiative—Clean Hydrogen and Its Uses. Available online: https://initiatives.weforum.org/accelerating-clean-hydrogen-initiative/cleanhydrogenanditsuses.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3