Research on Fast Detection Technology of Dark Currents in a Ge–Si Detector Array

Author:

Gao Zhen1,Tao Min1ORCID,Li Xuetong1,Song Junfeng12ORCID,Liu Zijian1,Wang Ziming1,Li Chengming1

Affiliation:

1. State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China

2. Peng Cheng Laboratory, Shenzhen 518055, China

Abstract

A shortwave infrared Ge–Si photodetector will become the core device of the LiDAR optical receiver. In order to meet the urgent demand for photodetectors in the LiDAR field, we designed and produced a 32 × 32-pixel Ge–Si photodetector array, which was proposed and developed to meet the performance requirements of the detector array. A dark current detection system for fast scanning and detecting large-scale Ge–Si detector arrays was proposed and developed to achieve the rapid detection of dark current in each detector pixel, with a detection accuracy of less than 1 nA. The system validated the primary performance indicators of the detector array we designed, achieving rapid discrimination of the array performance and rapid localization of damaged pixels. The scanning test results showed that the average dark current of the designed detector array chip was on the nanoampere level, and the proportion of bad points was less than 1%. The consistency of the array chip was high, which meets the requirements of light detection at the receiving end of LiDAR. This work laid the foundation for our subsequent development of a LiDAR prototype system.

Funder

National Natural Science Foundation of China

Major Scientific and Technological Program of Jilin Province

Project of Industrial Technology Research and Development of Jilin Provincial Development and Reform Commission

JLU Science and Technology Innovative Research Team

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3