A Review of Posture Detection Methods for Pigs Using Deep Learning

Author:

Chen Zhe123ORCID,Lu Jisheng123,Wang Haiyan123

Affiliation:

1. College of Informatics, Huazhong Agricultural University, Wuhan 430070, China

2. Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China

3. Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China

Abstract

Analysis of pig posture is significant for improving the welfare and yield of captive pigs under different conditions. Detection of pig postures, such as standing, lateral lying, sternal lying, and sitting, can facilitate a comprehensive assessment of the psychological and physiological conditions of pigs, prediction of their abnormal or detrimental behavior, and evaluation of the farming conditions to improve pig welfare and yield. With the introduction of smart farming into the farming industry, effective and applicable posture detection methods become indispensable for realizing the above purposes in an intelligent and automatic manner. From early manual modeling to traditional machine vision, and then to deep learning, multifarious detection methods have been proposed to meet the practical demand. Posture detection methods based on deep learning show great superiority in terms of performance (such as accuracy, speed, and robustness) and feasibility (such as simplicity and universality) compared with most traditional methods. It is promising to popularize deep learning technology in actual commercial production on a large scale to automate pig posture monitoring. This review comprehensively introduces the data acquisition methods and sub-tasks for pig posture detection and their technological evolutionary processes, and also summarizes the application of mainstream deep learning models in pig posture detection. Finally, the limitations of current methods and the future directions for research will be discussed.

Funder

Fundamental Research Funds for the Central Universities of China

National key research and development program

Hubei Province Science and Technology Major Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3