Analyzing the SAR in Human Head Tissues under Different Exposure Scenarios

Author:

Turgut Ahmet1ORCID,Engiz Begum Korunur1ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, Ondokuz Mayıs University, Samsun 55139, Turkey

Abstract

This paper deals with the assessment of induced specific absorption rate (SAR) in various human models under different exposure scenarios, including both laboratory measurements and simulations. Firstly, SAR values were measured in a standardized SAR laboratory using a phantom for two radiofrequency electromagnetic field (RF-EMF) sources at 900 MHz and 1800 MHz. These laboratory measurements served as a reference for SAR calculations conducted on a specific anthropomorphic mannequin (SAM) using a computer simulation technology (CST) program, thus enabling the determination of antenna location and excitation signal levels for further evaluation. Subsequently, simulations were carried out with CST to evaluate average SAR for the head and for specific head tissues such as the brain, muscles, and fat. Realistic computational human models were also used alongside SAM in CST to explore the influence of gender, age, and tissue type on SAR. Various power levels representing low, moderate, and high RF-EMF exposure were applied to the human models to compare against basic restrictions and reference levels. The simulation results indicate significantly higher SAR values calculated for 1800 MHz compared with 900 MHz. The ratio of the highest SAR values at 1800 MHz to 900 MHz is approximately 1.70 for a baby, 2.59 for a child, and 2.84 for both adult female and adult male. While the SAR values for the brain, fat, muscle, and head are comparable at 900 MHz for the baby, the brain’s SAR value at 1800 MHz stands out significantly from the other tissues. In contrast with the baby, the difference in SAR values between 900 MHz and 1800 MHz is more pronounced for the child, adult female and adult male. The lowest SAR values at 900 MHz and 1800 MHz were obtained for brain tissue in all human models, while the head has the highest SAR value. The maximum SAR change ratio between the brain and the head is calculated to be 4.44 for the male at 1800 MHz. The results reveal that, although the applied electromagnetic field levels were below reference levels for general public local exposure, some local SAR values exceeded the International Commission of Non-Ionizing Radiation Protection’s basic restriction for the general public at certain power levels, particularly at 1800 MHz. The SAR analysis derived from this study is significant in understanding the impact of wireless technologies on health, establishing safety standards, guiding technology advancement, conducting risk assessments, and increasing public awareness.

Funder

Ondokuz Mayıs University Research Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3