Abstract
Given the importance of understanding long-term dynamics of radionuclides in the environment in general, and major gaps in the knowledge of 137Cs particulate forms in Chernobyl exclusion zone water bodies, three heavily contaminated water bodies (Lakes Glubokoe, Azbuchin, and Chernobyl NPP Cooling Pond) were studied to reconstruct time changes in particulate concentrations of 137Cs and its apparent distribution coefficient Kd, based on 137Cs depth distributions in bottom sediments. Bottom sediment cores collected from deep-water sites of the above water bodies were sliced into 2 cm layers to obtain 137Cs vertical profile. Assuming negligible sediment mixing and allowing for 137Cs strong binding to sediment, each layer of the core was attributed to a specific year of profile formation. Using this method, temporal trends for particulate 137Cs concentrations in the studied water bodies were derived for the first time and they were generally consistent with the semiempirical diffusional model. Based on the back-calculated particulate 137Cs concentrations, and the available long-term monitoring data for dissolved 137Cs, the dynamics of 137Cs solid–liquid distribution were reconstructed. Importantly, just a single sediment core collected from a lake or pond many years after a nuclear accident seems to be sufficient to retrieve long-term dynamics of contamination.
Funder
Japan Society for the Promotion of Science
Japan Science and Technology Agency
Environment Research and Technology Development Fund of the Environmental Restoration and Conservation Agency of Japan
Subject
Nature and Landscape Conservation,Ecology,Global and Planetary Change