Abstract
Low cost and favorable handling characteristics make urea (46-0-0) a leading nitrogen source for frequent, foliar N fertilization of golf course putting greens in season. Yet few field investigations of resulting NH3 volatilization from putting greens have been directed. Meanwhile, NH3 emissions degrade air and surface water quality. Our objective was to quantify NH3 volatilization following practical, low-N rate, and foliar application of commercial urea-N fertilizers. Over the 2019 and 2020 growing seasons in University Park, PA, USA, an industrial vacuum pump, H3BO3 scrubbing flasks, and sixteen dynamic flux chambers were employed in four unique experiments to measure NH3 volatilization from creeping bentgrass putting greens (Agrostis stolonifera L. ‘Penn G2’) in the 24 h period ensuing foliar application of urea based-N at a 7.32 or 9.76 kg/ha rate. Simultaneous and replicated flux chamber trapping efficiency trials showing 35% mean NH3 recovery were used to adjust NH3 volatilization rates from treated plots. Under the duration and conditions described, 3.1 to 8.0% of conventional urea N volatilized from the putting greens as NH3. Conversely, 0.7 to 1.1% of methylol urea liquid fertilizer (60% short-chain methylene urea) or 0.7 to 2.2% of urea complimented with dicyandiamide (DCD) and N-(n-butyl) thiophosphoric triamide (NBPT) volatilized as NH3.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献