A Multi-Tool Analysis to Assess the Effectiveness of Passive Ice Protection Materials to Assist Rotorcraft Manual De-Icing

Author:

Brassard Jean-Denis,Posteraro DanyORCID,Sobhani Sarah,Ruggi Marco,Momen Gelareh

Abstract

Search and rescue missions using rotorcrafts need to be reliable all year long, even in winter conditions. In some cases of deployment prior to take off, the crew may need to manually remove accumulated contaminant from the critical surfaces using tools at their disposal. However, icy contaminant may be hard to remove since the rotorcrafts critical surfaces could be cooler than the environment, thus promoting adhesion. Currently, there exists several passive ice protection materials that could reduce the ice adhesion strength and assist the manual de-icing. The aim of this paper is to propose a detailed comparative procedure to assess the ability of materials to assist the manual de-icing of rotorcrafts. The proposed procedure consists of the characterization of materials using several laboratory tests in order to determine their characteristics pertaining to wettability, their icephobic behavior, and finally their assessment under a multi-tool analysis to evaluate if they can assist. The multi-tool analysis uses different mechanical tools, which are currently used during normal operation, to execute a gradual de-icing procedure, which begins with the softest to the hardest tool using a constant number of passes or strokes, under different types of simulated precipitation. Five different materials were used to evaluate the proposed procedure: Aluminum (used as a reference), two silicone-based coatings (Nusil and SurfEllent), an epoxy-based coating (Wearlon), and finally a commercial ski wax (Swix). All of the tested materials could assist the manual de-icing, within a certain limit, when compared to the bare aluminum. However, SurfEllent was the material that obtained the best overall results. This procedure could be easily adapted to different fields of application and could be used as a development tool for the optimization and the assessment of new materials aimed to reduce ice adhesion.

Funder

Department of National Defense of Canada

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3