Abstract
The dynamic modeling, motion control and flexible vibration active suppression of space robot under the influence of flexible base, flexible link and flexible joint are explored, and motion and vibration integrated fixed-time sliding mode control of fully flexible system is designed. The flexibility of the base and joints are equivalent to the vibration effect of linear springs and torsion springs. The flexible links are regarded as Euler–Bernoulli simply supported beams, which are analyzed by the hypothetical mode method, and the dynamic model of the fully flexible space robot is established by using the Lagrange equation. Then, the singular perturbation theory is used to decompose the model into slow subsystem including rigid motion and the link flexible vibrations, and fast subsystems including the base and the joint flexible vibrations. A fixed time sliding mode control based on hybrid trajectory is designed for the slow subsystem to ensure that the base and joints track the desired trajectory in a limited time while achieving vibration suppression on the flexible links. For the fast subsystem, linear quadratic optimal control is used to suppress the flexible vibration of the base and joints. The simulation results show that the controller proposed in the paper can make the system state converge within a fixed time, is robust to model uncertainty and external interference, and can effectively suppress the flexible vibration of the base, links, and joints.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献