Application of Crowd Simulations in the Evaluation of Tracking Algorithms

Author:

Staniszewski MichałORCID,Foszner Paweł,Kostorz Karol,Michalczuk Agnieszka,Wereszczyński Kamil,Cogiel Michał,Golba Dominik,Wojciechowski Konrad,Polański AndrzejORCID

Abstract

Tracking and action-recognition algorithms are currently widely used in video surveillance, monitoring urban activities and in many other areas. Their development highly relies on benchmarking scenarios, which enable reliable evaluations/improvements of their efficiencies. Presently, benchmarking methods for tracking and action-recognition algorithms rely on manual annotation of video databases, prone to human errors, limited in size and time-consuming. Here, using gained experiences, an alternative benchmarking solution is presented, which employs methods and tools obtained from the computer-game domain to create simulated video data with automatic annotations. Presented approach highly outperforms existing solutions in the size of the data and variety of annotations possible to create. With proposed system, a potential user can generate a sequence of random images involving different times of day, weather conditions, and scenes for use in tracking evaluation. In the design of the proposed tool, the concept of crowd simulation is used and developed. The system is validated by comparisons to existing methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference56 articles.

1. MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking;Leal-Taixé;arXiv,2015

2. MOT16: A Benchmark for Multi-Object Tracking;Milan;arXiv,2016

3. CVPR19 Tracking and Detection Challenge: How crowded can it get?;Dendorfer;arXiv,2019

4. MOT20: A benchmark for multi object tracking in crowded scenes;Dendorfer;arXiv,2020

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3