Antifungal Activities of Biogenic Silver Nanoparticles Mediated by Marine Algae: In Vitro and In Vivo Insights of Coating Tomato Fruit to Protect against Penicillium italicum Blue Mold

Author:

Hamouda Ragaa A.12ORCID,Almaghrabi Fatimah Q.1,Alharbi Ohoud M.1,Al-Harbi Abla D. M.1,Alsulami Rahaf M.1,Alhumairi Abrar M.1

Affiliation:

1. Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia

2. Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt

Abstract

In an attempt to reduce such decay induced by pathogenic causes, several studies investigated the effectiveness of nanoparticles (NPs) that play a vital role in saving food products, especially fruits. Current research delves into biogenic silver nanoparticles (using marine alga Turbinaria turbinata (Tt/Ag-NPs) and their characterization using FT-IR, TEM, EDS, and zeta potential. Some pathogenic fungi, which cause fruit spoilage, were isolated. We studied the impact of using Tt/Ag-NPs to protect against isolated fungi in vitro, and the influence of Tt/Ag-NPs as a coating of tomato fruit to protect against blue mold caused by Penicillium italicum (OR770486) over 17 days of storage time. Five treatments were examined: T1, healthy fruits were used as the positive control; T2, healthy fruits sprayed with Tt/Ag-NPs; T3, fruits infected with P. italicum followed by coating with Tt/Ag-NPs (pre-coating); T4, fruits coated with Tt/Ag-NPs followed by infection by P. italicum (post-coating); and T5, the negative control, fruits infected by P. italicum. The results displayed that Tt/Ag-NPs are crystalline, spherical in shape, with size ranges between 14.5 and 39.85 nm, and negative charges. Different concentrations of Tt/Ag-NPs possessed antifungal activities against Botrytis cinerea, Rhodotorula mucilaginosa, Penicillium expansum, Alternaria alternate, and Stemphylium vesicarium. After two days of tomatoes being infected with P. italicum, 55% of the fruits were spoilage. The tomato fruit coated with Tt/Ag-NPs delayed weight loss, increased titratable acidity (TA%), antioxidant%, and polyphenol contents, and decreased pH and total soluble solids (TSSs). There were no significant results between pre-coating and post-coating except in phenol contents increased in pre-coating. A particular focus is placed on the novel and promising approach of utilizing nanoparticles to combat foodborne pathogens and preserve commodities, with a spotlight on the application of nanoparticles in safeguarding tomatoes from decay.

Funder

University of Jeddah, Jeddah, Saudi Arabia

Publisher

MDPI AG

Reference82 articles.

1. Bioactive compounds in tomato and their roles in disease prevention;Shah;Fundam. Appl. Agric.,2021

2. Bioactive Compounds Extracted from Tomato Processing by-Products as a Source of Valuable Nutrients;Zabo;Plant Foods Hum. Nutr.,2018

3. Morphological and molecular identification of pathogenic fungal of post-harvest tomato fruit during storage;Xie;Afr. J. Microbiol. Res.,2012

4. Antifungal activity of plant essential oils against Botrytis cinerea, Penicillium italicum and Penicillium digitatum;Vitoratos;Not. Bot. Horti Agrobot. Cluj-Napoca,2013

5. Kanashiro, A.M., Akiyama, D.Y., Kupper, K.C., and Fill, T.P. (2020). Penicillium italicum: An underexplored postharvest pathogen. Front. Microbiol., 11.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3