Image-to-Image Subpixel Registration Based on Template Matching of Road Network Extracted by Deep Learning

Author:

Hikosaka Shuhei,Tonooka HideyukiORCID

Abstract

The vast digital archives collected by optical remote sensing observations over a long period of time can be used to determine changes in the land surface and this information can be very useful in a variety of applications. However, accurate change extraction requires highly accurate image-to-image registration, which is especially true when the target is urban areas in high-resolution remote sensing images. In this paper, we propose a new method for automatic registration between images that can be applied to noisy images such as old aerial photographs taken with analog film, in the case where changes in man-made objects such as buildings in urban areas are extracted from multitemporal high-resolution remote sensing images. The proposed method performs image-to-image registration by applying template matching to road masks extracted from images using a two-step deep learning model. We applied the proposed method to multitemporal images, including images taken more than 36 years before the reference image. As a result, the proposed method achieved registration accuracy at the subpixel level, which was more accurate than the conventional area-based and feature-based methods, even for image pairs with the most distant acquisition times. The proposed method is expected to provide more robust image-to-image registration for differences in sensor characteristics, acquisition time, resolution and color tone of two remote sensing images, as well as to temporal variations in vegetation and the effects of building shadows. These results were obtained with a road extraction model trained on images from a single area, single time period and single platform, demonstrating the high versatility of the model. Furthermore, the performance is expected to be improved and stabilized by using images from different areas, time periods and platforms for training.

Funder

Environmental Research and Technology Development Fund of the Environmental Restoration and Conservation Agency of Japan

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3