Novel Plant-Protein (Quinoa) Derived Bioactive Peptides with Potential Anti-Hypercholesterolemic Activities: Identification, Characterization and Molecular Docking of Bioactive Peptides

Author:

Ajayi Feyisola Fisayo1,Mudgil Priti1,Jobe Amie2,Antony Priya2,Vijayan Ranjit234ORCID,Gan Chee-Yuen5ORCID,Maqsood Sajid14ORCID

Affiliation:

1. Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates

2. Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates

3. The Big Data Analytics Center, United Arab Emirates University, Al-Ain 15551, United Arab Emirates

4. Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates

5. Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, SAINS@USM Campus, Bayan Lepas 11900, Malaysia

Abstract

Hypercholesterolemia remains a serious global public health concern. Previously, synthetic anti-hypercholesterolemic drugs were used for ameliorating this condition; however, long-term usage presented several side-effects. In this regard, natural products as an adjunct therapy has emerged in recent times. This study aimed to produce novel bioactive peptides with anti-hypercholesterolemic activity (cholesterol esterase (CEase) and pancreatic lipase (PL)) from quinoa protein hydrolysates (QPHs) using three enzymatic hydrolysis methods (chymotrypsin, protease and bromelain) at 2-h hydrolysis intervals (2, 4, and 6 h). Chymotrypsin-generated hydrolysates showed higher CEase (IC50: 0.51 mg/mL at 2 h) and PL (IC50: 0.78 mg/mL at 6 h) inhibitory potential in comparison to other derived hydrolysates and intact quinoa proteins. Peptide profiling by LC-MS QTOF and in silico interaction with target enzymes showed that only four derived bioactive peptides from QPHs could bind in the active site of CEase, whereas twelve peptides could bind in the active site of PL. Peptides QHPHGLGALCAAPPST, HVQGHPALPGVPAHW, and ASNLDNPSPEGTVM were identified to be potential CEase inhibitors, and FSAGGLP, QHPHGLGALCAAPPST, KIVLDSDDPLFGGF, MFVPVPH, and HVQGHPALPGVPAHW were identified as potential PL inhibitors on the basis of the maximum number of reactive residues in these bioactive peptides. In conclusion, QPHs can be considered as an alternative therapy for the treatment of hypercholesterolemia.

Funder

UAE University

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3