Accurate Classification of Chunmee Tea Grade Using NIR Spectroscopy and Fuzzy Maximum Uncertainty Linear Discriminant Analysis

Author:

Wu Xiaohong12ORCID,He Fei1,Wu Bin3,Zeng Shupeng1,He Chengyu1

Affiliation:

1. School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China

2. High-Tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province, Jiangsu University, Zhenjiang 212013, China

3. Department of Information Engineering, Chuzhou Polytechnic, Chuzhou 239000, China

Abstract

The grade of tea is closely related to tea quality, so the identification of tea grade is an important task. In order to improve the identification capability of the tea grade system, a fuzzy maximum uncertainty linear discriminant analysis (FMLDA) methodology was proposed based on maximum uncertainty linear discriminant analysis (MLDA). Based on FMLDA, a tea grade recognition system was established for the grade recognition of Chunmee tea. The process of this system is as follows: firstly, the near-infrared (NIR) spectra of Chunmee tea were collected using a Fourier transform NIR spectrometer. Next, the spectra were preprocessed using standard normal variables (SNV). Then, direct linear discriminant analysis (DLDA), maximum uncertainty linear discriminant analysis (MLDA), and FMLDA were used for feature extraction of the spectra, respectively. Finally, the k-nearest neighbor (KNN) classifier was applied to classify the spectra. The k in KNN and the fuzzy coefficient, m, were discussed in the experiment. The experimental results showed that when k = 1 and m = 2.7 or 2.8, the accuracy of the FMLDA could reach 98.15%, which was better than the other two feature extraction methods. Therefore, FMLDA combined with NIR technology is an effective method in the identification of tea grade.

Funder

Major Natural Science Research Projects of Colleges and Universities in Anhui Province

Talent Program of Chuzhou Polytechnic

Key Science Research Project of Chuzhou Polytechnic

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3