Classification of Belts Status Based on an Automatic Generator of Fuzzy Rules Base System

Author:

Marichal Graciliano Nicolás1,Hernández Ángela1ORCID,Ávila Deivis1ORCID,García-Prada Juan Carlos2

Affiliation:

1. Escuela Superior de Ingeniería y Tecnología, Universidad de La Laguna, 38200 Tenerife, Spain

2. E.T.S. de Ingenieros Industriales, Universidad Nacional de Educación a Distancia, 28040 Madrid, Spain

Abstract

The automation of maintenance is a growing field and consequently, predictive maintenance is achieving more importance. The main objective is to predict a breakage before it happens. In order to reach this, it is necessary to have an intelligent classification technique that analyzes the state of the key breakage elements and evaluates whether a replacement is necessary or not. This work presents a study to classify belts according to their state of use. For training, vibration data have been collected on a test bench using new belts, belts with half use and belts near the breaking point. The processing of these vibrations allows for extracting the characteristic parameters that can be related to its state of use, and then, after the initial analysis, these values are used as inputs for training the intelligent system. In particular, the Genetic Neuro-Fuzzy (GNF) technique has been chosen and, with the proposed algorithm, more detailed Fuzzy rules are obtained. Once the algorithm has been trained, it is possible to establish a relationship between the vibration shown by the belt and its state of use. The achieved results show that a good classifier has been built.

Publisher

MDPI AG

Reference29 articles.

1. Implementing Industry 4.0 principles;Mula;Comput. Ind. Eng.,2021

2. Predictive maintenance in the Industry 4.0: A systematic literature review;Zonta;Comput. Ind. Eng.,2020

3. Predictive maintenance, its implementation and latest trends;Selcuk;Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.,2016

4. Mantenimiento predictivo en tractores agrícolas. Propuesta de metolodogía orientada al mantenimiento conectado;Mafla;Rev. Iberoam. Ing.,2022

5. Industry 4.0, digitization, and opportunities for sustainability;Ghobakhloo;J. Clean. Prod.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3