How to Form Aggregates of Free Anammox Bacteria to Improve Sedimentation Performance

Author:

An Ni1,Zheng Yufeng1,Wei Yan2,Ma Bin1

Affiliation:

1. Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China

2. State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China

Abstract

Free anammox bacteria are superior in growth rate, but poor sedimentation performance limits their application in sewage treatment. In this study, we investigated how to form aggregates of free anammox bacteria to improve sedimentation performance. Calcium addition tests proved that free anammox bacteria could aggregate and form a larger entirety with better sedimentation performance through calcium cross-linking with alginate-like exopolysaccharides (ALEs). This was indicated by the particle size increasing by 411.45% and sedimentation performance (measured with supernatant transmittance) increasing by 195.35% after adding calcium for 12 h. Soluble extracellular polymeric substance (S-EPS) extraction and freeze–thaw testing elucidated that providing more cross-linking sites can strengthen the cross-linking, as indicated by the sedimentation performance increasing by 158.57% and 394.80%, respectively. Static experiments showed that cross-linking time was equally important. The sedimentation performance improved with longer static times under no severe external disturbances, with a 324.61% improvement after 84 h. However, the bacteria burst and the anammox activity disappeared after freeze–thaw treatment. Based on the above test results, a potential method for forming aggregates of free anammox bacteria to improve sedimentation performance was proposed: extract S-EPS with centrifugation first, add calcium, and keep the sludge free from external hydraulic interference.

Funder

National Natural Science Foundation of China

Hainan Provincial Natural Science Foundation of China

Key Research Development Plan of Hainan Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3