Seamless Power Management for a Distributed DC Microgrid with Minimum Communication Links under Transmission Time Delays

Author:

Tran Dat ThanhORCID,Habibullah Al FarisORCID,Kim Kyeong-HwaORCID

Abstract

To maintain voltage stabilization under transmission time delays, this paper proposes a seamless power management scheme for a distributed DC microgrid (DCMG) with minimum digital communication links (DCLs). First, a DCL topology with minimum communication data is presented for the construction of distributed DCMG system not only to mitigate the communication burden but also to enhance the system’s flexibility and reliability. In addition, based on information gathered from nearby agents and local measurements, the operating modes of local agents in a DCMG system are determined properly to ensure a proper power balance under various conditions. During normal operation, the proposed scheme works as a distributed control scheme either in the grid-connected or islanded mode to take advantage of the distributed control method. To maintain seamless power management even under transmission time delays such as grid fault detection delays and grid recovery detection delays, the operating modes of each agent in a DCMG system are switched to a decentralized scheme based on the droop control method. When the utility grid information is properly identified by all power agents after a transmission time delay, the DCMG system returns to the distributed control scheme based on DC-link voltage (DCV) control to guarantee voltage stabilization. Furthermore, the scalability issue of a distributed DCMG system is also considered in this paper when an additional energy storage system (AESS) agent is involved in the DCMG system. For this purpose, a DCL topology with minimum communication data is designed for the AESS, which enables power units to participate in or to leave the distributed DCMG system easily. Simulation and experimental results under various conditions demonstrate the effectiveness and reliability of the proposed seamless power management strategy.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3