Acoustic Response of a Vibrating Elongated Cylinder in a Hydrodynamic Turbulent Flow

Author:

Rismondo Giacomo,Cianferra Marta,Armenio Vincenzo

Abstract

The present paper contains the results of the numerical analysis of the interaction between a Newtonian incompressible turbulent flow and a linear elastic slender body, together with the influence of the fluid–structure interaction (FSI) on the noise generation and propagation. The purpose is to evaluate the differences in term of acoustic pressure between the case where the solid body is rigid (infinite stiffness) and the case where it is elastic (finite stiffness). A partitioned and implicit algorithm with the arbitrary Lagrangian–Eulerian method (ALE) is used for the interaction between the fluid and solid. For the evaluation of the turbulent fluid motion, we use a large eddy simulation (LES) with the Smagorinsky subgrid scale model. The equation for the solid is solved through the Lagrangian description of the momentum equation and the second Piola–Kirchoff stress tensor. In addition, the acoustic analogy of Lighthill is used to characterize the acoustic source (the slender body) by directly using the fluid dynamic fields. In particular, we use the Ffowcs Williams and Hawkings (FW-H) equation for the evaluation of the acoustic pressure in the fluid medium. As a first numerical experiment, we analyze a square cylinder immersed in a turbulent flow characterized by two different values of stiffness: one infinite (rigid case) and one finite (elastic case). In the latter case, the body stiffness and mean flow velocity are such that they induce the lock-in phenomenon. Finally, we evaluate the differences in terms of acoustic pressure between the two different cases.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference14 articles.

1. Murphy, E., and King, E.A. (2014). Environmental Noise Pollution: Noise Mapping, Public Health, and Policy, Newnes.

2. Carlton, J., and Vlasic, D. (2005, January 20–21). Ship vibration and noise: Some topical aspects. Proceedings of the 1st International Ship Noise and Vibration Conference, London, UK.

3. Environmental impact of wind energy;Saidur;Renew. Sustain. Energy Rev.,2011

4. Numerical simulation on fluid-structure interaction of wind around super-tall building at high reynolds number conditions;Huang;Struct. Eng. Mech.,2013

5. Aerodynamic and aeroelastic analyses on the CAARC standard tall building model using numerical simulation;Braun;Comput. Struct.,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3