Combined Culture and DNA Metabarcoding Analysis of Cyanobacterial Community Structure in Response to Coral Reef Health Status in the South China Sea

Author:

Kang Jianhua,Mohamed Hala F.ORCID,Liu Xinming,Pei Lulu,Huang Shuhong,Lin Xiangyuan,Zheng Xinqing,Luo ZhaoheORCID

Abstract

Cyanobacteria occupy an extraordinarily diverse array of ecological niches in coral reefs because they play multifaceted roles, including primary carbon and nitrogen fixation, calcification, nutrient cycling, and oxygen production, as well as coral reef degradation through skeletal biocorrosion and polymicrobial diseases. In this study, cyanobacterial diversity in sediment, water, and coral tissues were explored in relation to coral health status (slightly, moderately, and severely damaged) of coral reefs at Weizhou Island, South China Sea. Microscopy of taxa morphological characteristics was combined with 16S rRNA gene metabarcoding. Fifteen and forty-three cyanobacterial genera were identified based on universal prokaryotic 16S rRNA gene primers and cyanobacteria-specific 16S rRNA gene primers metabarcoding, respectively, indicating a more sophisticated efficiency of the latter. In addition, three out of seven cyanobacterial strains that were isolated and identified based on morphology and phylogeny could not be detected using either molecular method. Therefore, culture-based combined cyanobacteria-specific 16S rRNA gene metabarcoding are highly recommended in future routine surveys. There was a clear distinction in cyanobacterial assemblage composition among locations with different coral health statuses, with degraded reefs exhibiting approximately a 1.25-fold increase in species compared to healthy habitats. In addition, the spreading of potentially toxic cyanobacteria, such as Nostoc and Lyngbya, in the degraded reef implies putative links to reef degradation. This study provides novel insights into the taxonomical diversity of cyanobacteria in tropical coral reefs. Metabarcoding is recommended as an effective tool for revealing cyanobacterial diversity patterns and thereby providing critical information for the effective management of coral reef ecosystems.

Funder

Scientific Research Foundation of the Third Institute of Oceanography, MNR

National Key Research and Development Program of China

Natural Science Foundation of Fujian, China

Youth Innovation Project of Xiamen

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3