Investigating the Influence of Water Vapor on Heavy Rainfall Events in the Southern Korean Peninsula

Author:

Kim Yoo-JunORCID,Jee Joon-BumORCID,Lim Byunghwan

Abstract

In this study, we examined the influence of water vapor on heavy rainfall events over the complex mountainous terrain of the southern Korean Peninsula using rawinsonde and global navigation satellite system (GNSS) datasets from a mobile observation vehicle (MOVE). Results demonstrated that the prevailing southeasterly winds enhanced precipitation on the leeward side of the mountainous region. The probability of severe rainfall increased in the highest precipitable water vapor (PWV) bin (>60 mm). A lead–lag analysis demonstrated that the atmosphere remained moist for 1 h before and after heavy rainfall. The temporal behavior of PWV retrieved from the MOVE-GNSS data demonstrated that during Changma (the summer monsoon) (Case 1), heavy rainfall events experience a steep decrease after a long increasing trend in PWV. However, the most intense rainfall events occurred after a rapid increase in PWV along with a strong southwesterly water vapor flow during convective instability (Case 2), and they had consistently higher moisture and greater instability than those in Case 1 over the entire period. The results of this study can provide some insights to improve the predictability of heavy rainfall in the southern Korean Peninsula.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference45 articles.

1. A numerical study of the orographic effects associated with a heavy rainfall event;Kim;J. Korean Meteor. Soc.,2000

2. The numerical simulation of clouds, rain, and airflow over the Vosges and Black Forest mountains: A meso-β model with parameterized microphysics;Nickerson;Mon. Wea. Rev.,1985

3. The effects of low-level jet and topography on heavy rainfall near Mt. Jirisan;Park;J. Korean Meteor. Soc.,2003

4. Numerical studies on the relation between low-level jet and heavy rainfall;Lee;Proc. Spring Meet. Korean Earth Sci. Soc.,2004

5. A numerical simulation study of orographic effects for a heavy rainfall event over Korea using the WRF model;Lee;J. Korean Meteor. Soc.,2006

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3