Intelligent Crack Detection Method Based on GM-ResNet

Author:

Li Xinran1,Xu Xiangyang1,He Xuhui2ORCID,Wei Xiaojun2ORCID,Yang Hao3

Affiliation:

1. School of Rail Transportation, Soochow University, Suzhou 215006, China

2. School of Civil Engineering, Central South University, Changsha 410075, China

3. School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China

Abstract

Ensuring road safety, structural stability and durability is of paramount importance, and detecting road cracks plays a critical role in achieving these goals. We propose a GM-ResNet-based method to enhance the precision and efficacy of crack detection. Leveraging ResNet-34 as the foundational network for crack image feature extraction, we consider the challenge of insufficient global and local information assimilation within the model. To overcome this, we incorporate the global attention mechanism into the architecture, facilitating comprehensive feature extraction across the channel and the spatial width and height dimensions. This dynamic interaction across these dimensions optimizes feature representation and generalization, resulting in a more precise crack detection outcome. Recognizing the limitations of ResNet-34 in managing intricate data relationships, we replace its fully connected layer with a multilayer fully connected neural network. We fashion a deep network structure by integrating multiple linear, batch normalization and activation function layers. This construction amplifies feature expression, stabilizes training convergence and elevates the performance of the model in complex detection tasks. Moreover, tackling class imbalance is imperative in road crack detection. Introducing the focal loss function as the training loss addresses this challenge head-on, effectively mitigating the adverse impact of class imbalance on model performance. The experimental outcomes on a publicly available crack dataset emphasize the advantages of the GM-ResNet in crack detection accuracy compared to other methods. It is worth noting that the proposed method has better evaluation indicators in the detection results compared with alternative methodologies, highlighting its effectiveness. This validates the potency of our method in achieving optimal crack detection outcomes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province, China

Suzhou Innovation and Entrepreneurship Leading Talent Plan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3