SCAP SigFox: A Scalable Communication Protocol for Low-Power Wide-Area IoT Networks

Author:

Alqurashi Halah1,Bouabdallah Fatma1ORCID,Khairullah Enas1

Affiliation:

1. Faculty of Computing and Information Technology, King Abdelaziz University, Jeddah P.O. Box 80200, Saudi Arabia

Abstract

The Internet of Things (IoT) is a new future technology that is aimed at connecting billions of physical-world objects to the IT infrastructure via a wireless medium. Many radio access technologies exist, but few address the requirements of IoT applications such as low cost, low energy consumption, and long range. Low-Power wide-area network (LPWAN) technologies, especially SigFox, have a low data rate that makes them suitable for IoT applications, especially since the lower the data rate, the longer the usable distance for the radio link. SigFox technology achieves as a main objective network reliability by striving for the successful delivery of data messages through redundancy. Doing so results in one of the SigFox weaknesses, namely the high collision rate, which questions SigFox scalability. In this work, we aimed at avoiding collisions by changing SigFox’s Aloha-based medium access protocol to TDMA and by using only orthogonal channels while removing redundancy. Consequently, every node sends a single copy of the data message on a given orthogonal channel in a specific time slot. To achieve this, we implemented a slot- and channel-allocation protocol (SCAP) on top of SigFox. In other words, our goal was to improve SigFox’s scalability by implementing two mechanisms: time slot allocation and channel allocation. Performance analysis was conducted on large networks with sizes ranging from 1000 to 10,000 nodes to evaluate both technologies: the original SigFox and SCAP SigFox. The simulation results showed that SCAP SigFox highly reduced the probability of collision and energy consumption when compared to the original SigFox. Additionally, SCAP SigFox had a greater throughput and packet delivery ratio (PDR).

Funder

King Abdulaziz University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3