Verification of the System for Ship Position Keeping Equipped with a Set of Anchors in Unity3d

Author:

Wnorowski Jakub,Łebkowski AndrzejORCID

Abstract

Modern computers with specialised software are able to simulate oceans with waves and sea currents, and the action of wind, gravity, ships and other vehicles. The high-level programming languages that are used in this type of software can read information from navigation devices connected to the computer (e.g., via serial ports), and proceed to use the raw data in control algorithms. More and more desktop software and simulators can use data from additional electronic devices such as pressure sensors, temperature sensors, etc. Thus, it is possible to conduct real-time communication with a PLC (programmable logic controller) and use it in simulators. In this article, a user interface designed in Unity3d is presented. The user interface was able to read data from navigation devices, which were used in a ship positioning control algorithm. Verification of the algorithm occurred during research on a real ship, which used an anchor-based positioning system. Using data obtained on the real ship, a mathematical model of anchor winches was developed. Next, the mathematical model was implemented in the simulator developed in Unity3d. The simulator contained the same environmental conditions as during the research on the real ship. The mathematical model of anchor winches and implementation developed in the simulator will allow for future research on anchor-based positioning systems (e.g., in different environmental conditions). The research resulted in a shift of the ship’s position by 26.3 m under 280 degrees. The difference in arrival time to the target point between the real ship and the virtual ship was 19%, and the difference in position deviation was 330%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3