Abstract
Mathematical modeling represents a useful instrument to describe epidemic spread and to propose useful control actions, such as vaccination scheduling, quarantine, informative campaign, and therapy, especially in the realistic hypothesis of resources limitations. Moreover, the same representation could efficiently describe different epidemic scenarios, involving, for example, computer viruses spreading in the network. In this paper, a new model describing an infectious disease and a possible complication is proposed; after deep-model analysis discussing the role of the reproduction number, an optimal control problem is formulated and solved to reduce the number of dead patients, minimizing the control effort. The results show the reasonability of the proposed model and the effectiveness of the control action, aiming at an efficient resource allocation; the model also describes the different reactions of a population with respect to an epidemic disease depending on the economic and social original conditions. The optimal control theory applied to the proposed new epidemic model provides a sensible reduction in the number of dead patients, also suggesting the suitable scheduling of the vaccination control. Future work will be devoted to the identification of the model parameters referring to specific epidemic disease and complications, also taking into account the geographic and social scenario.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献