Analysis of Entropy Generation on Magnetohydrodynamic Flow with Mixed Convection through Porous Media

Author:

Abbas Munawwar Ali,Ahmed Bashir,Chen Li,Rehman Shamas ur,Saleem Muzher,Khudair Wissam Sadiq

Abstract

Various industrial operations involve frequent heating and cooling of electrical systems. In such circumstances, the development of relevant thermal devices is of extreme importance. During the development of thermal devices, the second law of thermodynamics plays an important role by means of entropy generation. Entropy generation should be reduced significantly for the efficient performance of the devices. The current paper reports an analytical study on micropolar fluid with entropy generation over a stretching surface. The influence of various physical parameters on velocity profile, microrotation profile, and temperature profile is investigated graphically. The impact of thermal radiation, porous medium, magnetic field, and viscous dissipation are also analyzed. Moreover, entropy generation and Bejan number are also illustrated graphically. Furthermore, the governing equations are solved by using HAM and code in MATHEMATICA software. It is concluded from this study that velocity and micro-rotation profile are reduced for higher values of magnetic and vortex viscosity parameter, respectively. For larger values of Eckert number and thermal radiation parameters, Bejan number and entropy generation are increased, respectively. These findings are useful in petroleum industries and engineering designs.

Funder

Shanghai Major Science Popularization Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3