Full Annulus Simulations of a Transonic Axial Compressor Stage with Distorted Inflow at Transonic and Subsonic Blade Tip Speed

Author:

Haug JakobORCID,Niehuis ReinhardORCID

Abstract

This article reports on systematic numerical studies on an axial compressor stage with distorted inflow. Four operating points at two speedlines were simulated with an inflow distortion generated by a 120 ∘ -sector segment with a wedge-type cross-section. With this setup, the interaction between the distorted inflow and the rotor flow was studied. The focus was put on the differences of the interaction between the distorted inflow and rotor flow as well as on the compressor behaviour at subsonic and transonic blade tip speeds, as the general mechanisms have been analysed in more detail in previous publications. The distorted flow itself is not influenced by the blade tip speed, but the interaction phenomena depend strongly on the spool speed and operating point. Additionally, the blade tip speed influences the circumferential sector of the compressor stage exit, which is affected by the distorted flow. The impact reaches from a small sector at 65% spool speed, with the peak efficiency operating point up to nearly the entire annulus at 100% spool speed, near the stall operating point.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3