Abstract
The phase velocity of a laser-driven wakefield can be efficiently controlled in a plasma channel. A beatwave of two long laser pulses is used. The frequency difference between these two laser pulses equals the local plasma frequency, so that the slow resonant excitation of the plasma wave is possible. Because the driver energy is spread over many plasma periods, the interference pattern can run with an arbitrary velocity along the channel and generate the wakefield with the same phase velocity. This velocity is defined by the channel radius and the structure of laser transverse modes excited in the channel. The wake velocity can be matched exactly to the witness velocity. This can be the vacuum speed of light for ultra-relativistic witnesses, or subluminal velocities for low-energy, weakly relativistic witnesses such as muons.
Funder
Deutsche Forschungsgemeinschaft
Schwartz/Reisman Center for Intense Laser Physics
RFBR Projects
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献