Exploring the Effects of Urban Development in Ten Chinese Node Cities along the Belt and Road Initiative on Vegetation Net Primary Productivity

Author:

Liu Gaosheng1ORCID,Pan Jie12ORCID,Jiang Yuxin1,Ye Xinquan1,Shao Fan1ORCID

Affiliation:

1. College of Forestry, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China

2. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

Abstract

Urbanization and economic growth in node cities surged due to the Belt and Road Initiative (BRI), leading to significant environmental changes, notably in vegetation net primary productivity (NPP). Investigating the ecological impact of these urban changes was crucial, despite scarce relevant studies. We employed Sen’s slope estimation and Mann–Kendall trend analysis to study NPP trends (2005–2020) in ten Belt and Road node cities. The Optimized Parameters Geographic Detector Model (OPGD) analyzed factors impacting NPP and their interactions. Results revealed significant NPP variations among the ten cities, ranging from 656.47 gCm−2a−1 to 250.55 gCm−2a−1, with over 79% showing increasing trends. Since 2013, Chongqing, Wuhan, Hefei, Nanchang, and Changsha experienced declining NPP, while the other five cities saw an increase. Natural factors like temperature, precipitation, and DEM predominantly influence rising NPP trends, while anthropogenic factors like land use changes and nighttime light drive NPP decline. Land use changes, with 39.0% explanatory power, primarily affect NPP. After 2013, construction land increased by 117.7 km2 on average, while arable land decreased by 274.8 km2, contributing to decreased vegetation cover NPP. Nighttime lights explained up to 25% of NPP variance. Regions with high nocturnal light values exhibited more developed urbanization but comparatively lower NPP levels.

Funder

Jiangsu Forestry Science and Technology Innovation and Promotion Project

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3