Evaluating Mineral Matter Dynamics within the Peatland as Reflected in Water Composition

Author:

Pezdir Valentina1,Serianz Luka1,Gosar Mateja1ORCID

Affiliation:

1. Geological Survey of Slovenia, Dimičeva ulica 14, 1000 Ljubljana, Slovenia

Abstract

Peatland hydrology plays an important role in preserving or changing the record in any consideration of past atmospheric deposition records in peat bogs. The Šijec bog, located on the Pokljuka plateau in Slovenia, is one of the largest ombrotrophic peatlands. We sampled the surface pools, pore water, drainage from the peatland, and karst streams not connected to the peatland. Additionally, we sampled the precipitation, as ombrotrophic peatlands receive mineral matter solely from the atmosphere. The results of the evaluation of the chemical and isotopic composition indicated different origins of dissolved mineral matter in different water types. The components originating from the bedrock and surrounding soils (Ca, Mg, Al, Si, Sr) predominated in the streams. The chemical composition of the peatland drainage water revealed the significant removal of major components from the peatland, particularly elements like Al, Fe, and REE, and metals that are readily dissolved in an acidic environment or mobile in their reduced state. Despite their solubility, concentrations of metals (As, Cr, Cu, Fe, Ni, Pb, Ti) and REE in surface pools remained higher than in the drainage due to incomplete elimination from the peatland. The composition of pore water reflects variations among the W and E parts of the peatland, indicating a heterogenous hydrological structure with different dynamics, such as an additional source of water at approximately 90 cm depth in the NW part. The chemical composition and isotope signature (18O and 2H) of pore water additionally indicated a heterogeneous recharge with residence times of less than a year. The overall analysis indicated a predominantly ombrotrophic type and a small part in the NW area of the peatland as a minerotrophic type of peat.

Funder

Slovenian Research and Innovation Agency

Slovenian National Commission for UNESCO, National Committee of the International Geoscience and Geoparks Programme

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3