A Biodegradable Bioactive Glass-Based Hydration Sensor for Biomedical Applications

Author:

Gharbi Amina,Kallel Ahmed YahiaORCID,Kanoun OlfaORCID,Cheikhrouhou-Koubaa WissemORCID,Contag Christopher H.,Antoniac IulianORCID,Derbel Nabil,Ashammakhi Nureddin

Abstract

Monitoring changes in edema-associated intracranial pressure that complicates trauma or surgery would lead to improved outcomes. Implantable pressure sensors have been explored, but these sensors require post-surgical removal, leading to the risk of injury to brain tissue. The use of biodegradable implantable sensors would help to eliminate this risk. Here, we demonstrate a bioactive glass (BaG)-based hydration sensor. Fluorine (CaF2) containing BaG (BaG-F) was produced by adding 5, 10 or 20 wt.% of CaF2 to a BaG matrix using a melting manufacturing technique. The structure, morphology and electrical properties of the resulting constructs were evaluated to understand the physical and electrical behaviors of this BaG-based sensor. Synthesis process for the production of the BaG-F-based sensor was validated by assessing the structural and electrical properties. The structure was observed to be amorphous and dense, the porosity decreased and grain size increased with increasing CaF2 content in the BaG matrix. We demonstrated that this BaG-F chemical composition is highly sensitive to hydration, and that the electrical sensitivity (resistive–capacitive) is induced by hydration and reversed by dehydration. These properties make BaG-F suitable for use as a humidity sensor to monitor brain edema and, consequently, provide an alert for increased intracranial pressure.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference48 articles.

1. Intracranial pressure: Current perspectives on physiology and monitoring;Hawryluk;Intensive Care Med.,2022

2. Kidney Dysfunction After Traumatic Brain Injury: Pathophysiology and General Management;Vlieger;J. Neurocrit. Care,2022

3. Implantable application of polymer-based biosensors;Mei;J. Polym. Sci.,2022

4. Wearable Chemical Sensors: Present Challenges and Future Prospects;Bandodkar;ACS Sens.,2016

5. Current state and future prospects of sensors for evaluating polymer biodegradability and sensors made from biodegradable polymers: A review;Koh;Anal. Chim. Acta,2022

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3