Effects of Nanofluids in Improving the Efficiency of the Conical Concentrator System

Author:

Abdalha Mahmood Alsalame Haedr,Hussain Muhammad Imtiaz,Lee Gwi-Hyun

Abstract

Fossil fuels are being depleted, resulting in increasing environmental pollution due to greenhouse gases and, consequently, emerging detrimental environmental problems. Therefore, renewable energy is becoming more important; hence, significant research is in progress to increase efficient uses of solar energy. In this paper, the thermal performance of a conical concentrating system with different heat transfer fluids at varied flow rates was studied. The conical-shaped concentrator reflects the incoming solar radiation onto the absorber surface, which is located at the focal axis, where the collected heat is transported through heating mediums or heat transfer fluids. Distilled water and nanofluids (Al2O3, CuO) were used in this study as the heat transfer fluids and were circulated through the absorber and the heat storage tank in a closed loop by a pump to absorb the solar radiation. The efficiency of the conical concentrating system was measured during solar noon hours under a clear sky. The collector efficiency was analyzed at different flow rates of 2, 4, and 6 L/min. The thermal efficiency, calculated using different heat transfer fluids, were 72.5% for Al2O3, 65% for CuO, and 62.8% for distilled water. Comparing the thermal efficiency at different flow rates, Al2O3 at 6 L/min, CuO at 6 L/min, and distilled water at 4 L/min showed high efficiencies; these results indicate that the Al2O3 nanofluid is the better choice for use as a heating medium for practical applications.

Funder

Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3