Intelligent Backstepping Control of Permanent Magnet-Assisted Synchronous Reluctance Motor Position Servo Drive with Recurrent Wavelet Fuzzy Neural Network

Author:

Lin Faa-Jeng1ORCID,Huang Ming-Shi2,Chien Yu-Chen1,Chen Shih-Gang2

Affiliation:

1. Department of Electrical Engineering, National Central University, Taoyuan 32001, Taiwan

2. Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

Abstract

An intelligent servo drive system for a permanent magnet-assisted synchronous reluctance motor (PMASynRM) that can adapt to the control requirements considering the motor’s nonlinear and time-varying natures is developed in this study. A recurrent wavelet fuzzy neural network (RWFNN) with intelligent backstepping control is proposed to achieve this. In this study, first, a maximum torque per ampere (MTPA) controlled PMASynRM servo drive is introduced. A lookup table (LUT) is created, which is based on finite element analysis (FEA) results by using ANSYS Maxwell-2D dynamic model to determine the current angle command of the MTPA. Next, a backstepping control (BSC) system is created to accurately follow the desired position in the PMASynRM servo drive system while maintaining robust control characteristics. However, designing an efficient BSC for practical applications becomes challenging due to the lack of prior uncertainty information. To overcome this challenge, this study introduces an RWFNN as an approximation for the BSC, aiming to alleviate the limitations of the traditional BSC approach. An enhanced adaptive compensator is also incorporated into the RWFNN to handle potential approximation errors effectively. In addition, to ensure the stability of the RWFNN, the Lyapunov stability method is employed to develop online learning algorithms for the RWFNN and to guarantee its asymptotic stability. The proposed intelligent backstepping control with recurrent wavelet fuzzy neural network (IBSCRWFNN) demonstrates remarkable effectiveness and robustness in controlling the PMASynRM servo drive, as evidenced by the experimental results.

Funder

National Science and Technology Council of Taiwan

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference30 articles.

1. Effects of Rotor Position Error in the Performance of Field Oriented Controlled PMSM Drives for Electric Vehicle Traction Applications;Lara;IEEE Trans. Ind. Electron.,2016

2. Design and Comparison of Interior Permanent Magnet Motor Topologies for Traction Applications;Yang;IEEE Trans. Transp. Electrif.,2017

3. High Power Density PMSM with Lightweight Structure and High-Performance Soft Magnetic Alloy Core;Fang;IEEE Trans. Appl. Supercond.,2019

4. A Novel High Power Density Permanent-Magnet Synchronous Machine with Wide Speed Range;Kong;IEEE Trans. Magn.,2020

5. Prediction of Mechanical Loss for High-Power-Density PMSM Considering Eddy Current Loss of PMs and Conductors;Park;IEEE Trans. Magn.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3