Research on Product Yield Prediction and Benefit of Tuning Diesel Hydrogenation Conversion Device Based on Data-Driven System

Author:

Zheng Qianqian1,Fan Yijun2,Zhou Zhi2,Jiang Hongbo1ORCID,Zhou Xiaolong1

Affiliation:

1. School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

2. Sinopec Anqing Petrochemical Company, Anqing 246002, China

Abstract

In the refining process, a large amount of data are generated in daily production, and how to make full use of these data to improve the accuracy of simulation is the key to improving the operation level of refineries. At the same time, with the increasing environmental regulations and the improvement of gasoline and diesel quality standards, the ratio of diesel to gasoline is also changing with people’s demand for fuel consumption. Catalytic cracking light cycle oil (LCO) hydrogenation conversion technology (react LCO into gasoline, RLG) can produce modified diesel with high-octane gasoline, a high cetane number, and a low sulfur content, which improves the added value of the product. In this article, based on the production and operation data of a 1 million tons/year RLG device, a device yield prediction model was established using a deep neural network (DNN) algorithm, and the model was further optimized using a genetic algorithm (GA) to maximize the economic benefits of the device. As a result, the gasoline production yield increased by more than 3%. The experimental results show that the established model has a good reference value for improving the economic benefits of the RLG device.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3