Advanced Model of Spatiotemporal Mining-Induced Kinematic Excitation for Multiple-Support Bridges Based on the Regional Seismicity Characteristics

Author:

Boroń PawełORCID,Dulińska Joanna MariaORCID,Jasińska DorotaORCID

Abstract

In the paper, an advanced model of spatiotemporal mining-induced kinematic excitation (SMIKE) for multiple-support bridges exposed to mining-induced seismicity is proposed. The uniqueness of this model results from the possibility of its application in any region of mining activity, as it is based on empirical regression functions characterizing such regions. In the model, the loss of coherency resulting from the scattering of waves in the heterogeneous ground, the wave-passage effect originating in different arrival times of waves to consecutive supports, and the site-response effect depending on the local soil conditions are taken into account. The loss of coherency of mining-induced seismic waves is obtained by applying a random field generator based on a spatial correlation function to produce time histories of accelerations on consecutive structure supports based on an originally recorded shock. The deterministic approach is used to account for temporal wave variability. The proposed SMIKE model is applied to assess the dynamic performance of a five-span bridge under a mining-induced shock recorded in the Upper Silesian Coal Basin (USCB), Poland. The first model’s parameter (space scale parameter) is identified on the basis of regression curves defined for the USCB region. The estimation of the second parameter (the mean apparent wave passage velocity) is based on discrete experimental data acquired via the vibroseis excitation registered in the in situ experiment. The impact of the model application on the dynamic performance of the bridge is assessed by comparing the dynamic response levels under SMIKE excitations, classic uniform excitations, and the “traveling wave” model—accounting only for the wave passage effect. The influence of wave velocity occurs to be crucial, modifying (either amplifying or reducing, depending on the location of the analyzed point) the dynamic response level up to a factor of two. The introduction of the space scale parameter changes the results by 20% in relation to the outcomes obtained for the “traveling” wave only.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference59 articles.

1. Mining Induced Seismicity

2. Recent research in seismology in South Africa;Linzer;S. Afr. J. Sci.,2007

3. Seismic activation of tectonic stresses by mining

4. Site specific prediction equations for peak acceleration of ground motion due to earthquakes induced by underground mining in Legnica-Głogów Copper District in Poland

5. Response of a panel building to mining induced seismicity in Karvina area (Czech Republic);Hradil;Acta Montan. Slovaca,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3