A Multi-Objective Modified PSO for Inverse Kinematics of a 5-DOF Robotic Arm

Author:

Rokbani NizarORCID,Neji BilelORCID,Slim Mohamed,Mirjalili Seyedali,Ghandour Raymond

Abstract

In this paper, a new modified particle swarm optimization, m-PSO, is proposed, in which the novelty consists of proposing a fitness-based particle swarm optimization algorithm, PSO, which adapts the particles’ behavior rather than the PSO parameters and where particles evolve differently considering their level of optimality. A multi-objective optimization, MO, approach is then built based on m-PSO. In the proposed method, particles with fitness better than the mean local best are only updated toward the global best, while others keep moving in a classical manner. The proposed m-PSO and its multi-objective version MO-m-PSO are then employed to solve the inverse kinematics of a 5-DOF robotic arm which is 3D-printed for educational use. In the MO-m-PSO approach of inverse kinematics, the arm IK problem is formulated as a multi-objective problem searching for an appropriate solution that takes into consideration the end-effector position and orientation with a Pareto front strategy. The IK problem is addressed as the optimization of the end-effector position and orientation based on the forward kinematics model of the systems which is built using the Denavit–Hartenberg approach. Such an approach allows to avoid classical inverse kinematics solvers challenges such as singularities, which may simply harm the existence of an inverse expression. Experimental investigations included the capacity of the proposal to handle random single points in the workspace and also a circular path planning with a specific orientation. The comparative analysis showed that the mono-objective m-PSO is better than the classical PSO, the CSA, and SSA. The multi-objective variants returned accurate results, fair and better solutions compared to multi-objective variants of MO-PSO, MO-JAYA algorithm, and MO-CSA. Even if the proposed method were applied to solve the inverse kinematics of and educational robotics arms for a single point as well as for a geometric shape, it may be transposed to solve related industrial robotized arms withthe only condition of having their forward kinematics model.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3