Using Deep 1D Convolutional Grated Recurrent Unit Neural Network to Optimize Quantum Molecular Properties and Predict Intramolecular Coupling Constants of Molecules of Potential Health Medications and Other Generic Molecules

Author:

Oyewola David OpeoluwaORCID,Dada Emmanuel GbengaORCID,Emebo OnyekaORCID,Oluwagbemi Olugbenga OluseunORCID

Abstract

A molecule is the smallest particle in a chemical element or compound that possesses the element or compound’s chemical characteristics. There are numerous challenges associated with the development of molecular simulations of fluid characteristics for industrial purposes. Fluid characteristics for industrial purposes find applications in the development of various liquid household products, such as liquid detergents, drinks, beverages, and liquid health medications, amongst others. Predicting the molecular properties of liquid pharmaceuticals or therapies to address health concerns is one of the greatest difficulties in drug development. Computational tools for precise prediction can help speed up and lower the cost of identifying new medications. A one-dimensional deep convolutional gated recurrent neural network (1D-CNN-GRU) was used in this study to offer a novel forecasting model for molecular property prediction of liquids or fluids. The signal data from molecular properties were pre-processed and normalized. A 1D convolutional neural network (1D-CNN) was then built to extract the characteristics of the normalized molecular property of the sequence data. Furthermore, gated recurrent unit (GRU) layers processed the extracted features to extract temporal features. The output features were then passed through several fully-connected layers for final prediction. For both training and validation, we used molecular properties obtained from the Kaggle database. The proposed method achieved a better prediction accuracy, with values of 0.0230, 0.1517, and 0.0693, respectively, in terms of the mean squared error (MSE), root mean square error (RMSE), and mean absolute error (MAE).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design;Becke,2007

2. Active search in intensionally specified structured spaces;Oglic;Proceedings of the AAAI Conference on Artificial Intelligence,2017

3. The Quantum Mechanics of Many-Body Systems;Thouless,2014

4. Self-Consistent Equations Including Exchange and Correlation Effects

5. Neural message passing for quantum chemistry;Gilmer,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3