Relativistic Free Schrödinger Equation for Massive Particles in Schwartz Distribution Spaces

Author:

Carfí David12ORCID

Affiliation:

1. Department of Mathematics, University of California Riverside, Riverside, CA 92521, USA

2. Department MIFT, University of Messina, 98158 Messina, Italy

Abstract

In this work, we pose and solve, in tempered distribution spaces, an open problem proposed by Schrödinger in 1925. In particular, on the Schwartz distribution spaces, we define the linear continuous quantum operators associated with relativistic Hamiltonians of massive particles—particles with rest mass different from 0 and evolving in the four-dimensional Minkowski vector space M4. In other words, upon the tempered distribution state-space S′(M4,C), we have found the most natural way to introduce the free-particle relativistic Hamiltonian operator and its corresponding Schrödinger equation (together with its conjugate equation, standing for antiparticles). We have found the entire solution space of our relativistic linear continuous evolution equation by completely solving a division problem in tempered distribution space. We define the Hamiltonian (Schwartz diagonalizable) operator as the principal square root of a strictly positive, Schwartz diagonalizable second-order differential operator (linked with the “Klein–Gordon operator” on the tempered distribution space S4′). The principal square root of a Schwartz nondefective operator is defined in a straightforward way—following the heuristic fashion of some classic and greatly efficient quantum theoretical approach—in the paper itself.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference53 articles.

1. Schwartz, L. (2011). Oeuvres Scientifiques I, II, III, American Mathematical Society.

2. Schwartz, L. (1966). Mathematics for the Physical Sciences, Hermann and Addison–Wesley.

3. Schwartz, L. (1979). Analyse Hilbertienne, Hermann.

4. Schwartz, L. (1968). Application of Distributions to the Theory of Elementary Particles in Quantum Mechanics, Gordon and Breach.

5. Schwartz, L. (1966). Théorie des Distributions, Hermann.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Relativistic Schrödinger equation and probability currents for free particles;Proceedings of the International Geometry Center;2024-01-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3