Estimating Evapotranspiration of Screenhouse Banana Plantations Using Artificial Neural Network and Multiple Linear Regression Models

Author:

Yohanani Efi,Frisch Amit,Lukyanov Victor,Cohen ShabtaiORCID,Teitel MeirORCID,Tanny JosefORCID

Abstract

Measured evapotranspiration (LE) of screenhouse banana plantations was utilized to derive and compare two types of machine-learning models: artificial neural network (ANN) and multiple linear regression (MLR). The measurements were conducted by eddy-covariance systems and meteorological sensors in two similar screenhouse banana plantations during two consecutive seasons, 2016 and 2017. Most of the study focused on the season of 2017, which includes a more extended data set (141 days) than 2016 (52 days). The results show that in most cases, the ANN model was superior to MLR. When trained and validated over the whole data set of 2017, the ANN and MLR models provided R2 of 0.92 and 0.89, RMSE of 37.5 and 45.1 W m−2 and MAE of 21 and 27.2 W m−2, respectively. Models could be derived using a training dataset as short as one month and still provide reliable estimations. Depending on the chosen calendar month for training, R2 of the ANN model varied in the range 0.81–0.89, while for the MLR model, it ranged 0.73–0.88. When trained using a data set as short as one week, there was some deterioration in model performance; the corresponding ranges of R2 for the ANN and MLR models were 0.37–0.89 and 0.37–0.71, respectively. As expected for a screenhouse decoupled environment, solar radiation (Rg) was the variable that most influenced LE; using Rg as the sole input variable, the ANN model resulted in R2, RMSE and MAE of 0.88 and 47 W m−2 and 25.6 W m−2, respectively, values that are not much worse than using all input variables (solar radiation, air temperature, air relative humidity and wind speed). Using Rg alone as the input to the MLR model only slightly deteriorated R2 (=0.88); however, RMSE (=124 W m−2) and MAE (=75.7 W m−2) were significantly larger compared to a model based on all input variables. To examine model performance in different seasons, models were trained using the data set of 2017 and validated in 2016, and vice versa. Results showed that training on the data of 2017 and validation in 2016 provided superior results than the opposite, presumably since the 2017 measurement season was longer and weather conditions were more diverse than in the 2016 data set. It is concluded that the ANN and MLR models are reasonable options for estimating evapotranspiration in a banana screenhouse.

Funder

Chief Scientist of the Ministry of Agriculture, Israel

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3