Author:
Denmud Nipon,Baite Kradsanai,Plookphol Thawatchai,Janudom Somjai
Abstract
In the present study, the effects of operating parameters, namely, rotor speed, feed rate, and inlet air velocity, on the cut diameter of a cage-type separator were studied. The design of experiments (DOE) method was used to investigate the relationship between the operating parameters and the cut size. The experimental results were statistically analyzed using MINITAB 16 software. Both the rotor speed and air inlet velocity had significant main effects on the cut size. The feed rate was also significant but had a weak effect with respect to the rotor speed and inlet air velocity effects. The cut size decreased with an increase in rotor speed and increased with an increase in air inlet velocity. However, the cut size slightly decreased with an increase in feed rate. An empirical multiple-variable linear model for predicting the cut size of the classification was created and presented. The results derived from the statistical analysis were in good agreement with those from the experiments, additionally extended from the DOE. The optimal conditions for classification of SAC305 powder with size range 25–40 μm were obtained when the turbo air classifier was operated at rotor speed 406 RPM, the feed rate 4 kg/h, and the air velocity 5 m/s. The smallest cut size of the classifier was about 27.8 μm.
Funder
Graduate School at Prince of Songkla University (PSU. Ph.D. Scholarship grant), Thailand Government Research
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献