A Novel Data-Driven Method to Estimate Methane Adsorption Isotherm on Coals Using the Gradient Boosting Decision Tree: A Case Study in the Qinshui Basin, China

Author:

Zhang Jiyuan,Feng Qihong,Zhang Xianmin,Hu Qiujia,Yang Jiaosheng,Wang Ning

Abstract

The accurate determination of methane adsorption isotherms in coals is crucial for both the evaluation of underground coalbed methane (CBM) reserves and design of development strategies for enhancing CBM recovery. However, the experimental measurement of high-pressure methane adsorption isotherms is extremely tedious and time-consuming. This paper proposed the use of an ensemble machine learning (ML) method, namely the gradient boosting decision tree (GBDT), in order to accurately estimate methane adsorption isotherms based on coal properties in the Qinshui basin, China. The GBDT method was trained to correlate the adsorption amount with coal properties (ash, fixed carbon, moisture, vitrinite, and vitrinite reflectance) and experimental conditions (pressure, equilibrium moisture, and temperature). The results show that the estimated adsorption amounts agree well with the experimental ones, which prove the accuracy and robustness of the GBDT method. A comparison of the GBDT with two commonly used ML methods, namely the artificial neural network (ANN) and support vector machine (SVM), confirms the superiority of GBDT in terms of generalization capability and robustness. Furthermore, relative importance scanning and univariate analysis based on the constructed GBDT model were conducted, which showed that the fixed carbon and ash contents are primary factors that significantly affect the adsorption isotherms for the coal samples in this study.

Funder

CHINA NATIONAL NATURAL SCIENCE FOUNDATION

CHINA POSTDOCTORAL SCIENCE FOUNDATION

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3