Explicit Modeling of Meteorological Explanatory Variables in Short-Term Forecasting of Maximum Ozone Concentrations via a Multiple Regression Time Series Framework

Author:

Iglesias-Gonzalez Sigfrido,Huertas-Bolanos Maria E.ORCID,Hernandez-Paniagua Ivan Y.,Mendoza AlbertoORCID

Abstract

Statistical time series forecasting is a useful tool for predicting air pollutant concentrations in urban areas, especially in emerging economies, where the capacity to implement comprehensive air quality models is limited. In this study, a general multiple regression with seasonal autoregressive moving average errors model was estimated and implemented to forecast maximum ozone concentrations with a short time resolution: overnight, morning, afternoon and evening. In contrast to a number of short-term air quality time series forecasting applications, the model was designed to explicitly include the effects of meteorological variables on the ozone level as exogenous variables. As the application location, the model was constructed with data from five monitoring stations in the Monterrey Metropolitan Area of Mexico. The results show that, together with structural stochastic components, meteorological parameters have a significant contribution for obtaining reliable forecasts. The resulting model is an interpretable, useful and easily implementable model for forecasting ozone maxima. Moreover, it proved to be consistent with the general dynamics of ozone formation and provides a suitable platform for forecasting, showing similar or better performance compared to models in other existing studies.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3