Impacts on Brake Particle Emission Testing

Author:

Gramstat SebastianORCID,Mertens Thilo,Waninger Robert,Lugovyy Dmytro

Abstract

The presented article picks out brake particle emission testing as a central theme. Those emissions are part of the so-called non-exhaust emissions, which play an increasing role for particle emissions from transportation. The authors propose a laboratory test setup by using a brake dynamometer and a constant volume sampling approach to determine the emissions in regard to the particle number concentration. Several impacts were investigated while the same test cycle (novel worldwide harmonized light vehicles test procedure (novel-WLTP)) was applied. In a first item, the importance of the bedding process was investigated and it is shown that friction couples without bedding emit much more particles. Furthermore, the efforts for reaching a bedded friction state are discussed. Additionally, the impact of brake lining compositions is investigated and shows that NAO concepts own crucial advantages in terms of brake particle emissions. Another impact, the vehicle weight and inertia, respectively, shows how important lightweight measures and brake cooling improvements are. Finally, the role of the load profile is discussed, which shows the importance of driving parameters like vehicle speed and reservoir dynamics. The authors show that, under urban driving conditions, extreme low particle emissions are detected. Furthermore, it is explained that off-brake emissions can play a relevant role in regard to brake particle emissions.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference22 articles.

1. Friction, wear and airborne particle emission from Cu-free brake materials

2. Traffic induced particle resuspension in Paris: Emission factors and source contributions

3. Non-Exhaust Emissions. UK Department for Transport Perspectivehttps://wiki.unece.org/download/attachments/73924923/PMP-48-15%20UK%20DfT%20Non-exhaust%20emissions%20-%20UNECE%20PMP.pdf?api=v2

4. A novel real-world braking cycle for studying brake wear particle emissions

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3