Evaluation of Six Satellite and Reanalysis Precipitation Products Using Gauge Observations over the Yellow River Basin, China

Author:

An Yiming,Zhao Wenwu,Li Changjia,Liu YanxuORCID

Abstract

Satellite-based and reanalysis products are precipitation data sources with high potential, which may exhibit high uncertainties over areas with a complex climate and terrain. This study aimed to evaluate the accuracy of the latest versions of six precipitation products (i.e., Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) V2.0, gauge-satellite blended (BLD) Climate Prediction Center Morphing technique (CMORPH) V1.0, European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA) 5-Land, Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) V6 Final, Global Satellite Mapping of Precipitation (GSMaP) near-real-time product (NRT) V6, and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN)-CDR) over the Yellow River Basin, China. The daily precipitation amounts determined by these products were evaluated against gauge observations using continuous and categorical indices to reflect their quantitative accuracy and capability to detect rainfall events, respectively. The evaluation was first performed at different time scales (i.e., daily, monthly, and seasonal scales), and indices were then calculated at different precipitation grades and elevation levels. The results show that CMORPH outperforms the other products in terms of the quantitative accuracy and rainfall detection capability, while CHIRPS performs the worst. The mean absolute error (MAE), root mean square error (RMSE), probability of detection (POD), and equitable threat score (ETS) increase from northwest to southeast, which is similar to the spatial pattern of precipitation amount. The correlation coefficient (CC) exhibits a decreasing trend with increasing precipitation, and the mean error (ME), MAE, RMSE, POD and BIAS reveal an increasing trend. CHIRPS demonstrates the highest capability to detect no-rain events and the lowest capability to detect rain events, while ERA5 has the opposite performance. This study suggests that CMORPH is the most reliable among the six precipitation products over the Yellow River Basin considering both the quantitative accuracy and rainfall detection capability. ME, MAE, RMSE, POD (except for ERA5) and BIAS (except for ERA5) increase with the daily precipitation grade, and CC, RMSE, POD, false alarm ratio (FAR), BIAS, and ETS exhibit a negative correlation with elevation. The results of this study could be beneficial for both developers and users of satellite and reanalysis precipitation products in regions with a complex climate and terrain.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3