Accumulation Characteristics of Metals and Metalloids in Plants Collected from Ny-Ålesund, Arctic

Author:

Ma Hongmei,Shi GuitaoORCID,Cheng Yongqian

Abstract

Toxic elements can be transported to polar regions by long-range atmospheric transport from mid and low latitudes, leading to enrichment of elements in the polar environment, especially in the Arctic. The plants can be ideal bioindicators of element contamination in environments, but information on the element enrichment and sources of plants remains limited in polar regions. Here, concentrations of 15 metals and metalloids (Pb, Ni, Cr, Cu, Co, As, Cd, Sb, Hg, Se, Fe, Zn, Mn, Al, and Ti) in six species of plants, Deschampsia caespitosa (Tufted Hair Grass), Puccinellia phryganodes (Creeping Alkaligrass), Saxifraga aizoides (Yellow Mountain Saxifrage), Dicranum angustum (Dicranum Moss), Salix Polaris (Polar Willow), and Cerastium arcticum (Arctic Mouse-Ear Chickweed), collected from Ny-Ålesund, the Arctic, were determined, and enrichment and sources of elements were assessed. Results show that element concentrations vary in different plant species, and element levels in D. angustum and C. arcticum are generally higher. In spatial terms, elevated element concentrations were found near residential areas, while low element levels were present at the sites far from settlement points. Enrichment assessment shows that Cd, Hg, and Zn are the most enriched elements, with enrichment factors above 30, suggesting sources other than soil dust control their concentrations. Principal component analysis (PCA) showed that the extracted three components can explain 82% of the total variance in element concentrations. The elements Ni, Cr, As, Sb, Fe, Al, Ti, and to a lesser extent Co are highly loaded in PC1, possibly associated with continental crust particles. PC2 is closely correlated with Cd, Se, Mn, Cu, and Zn, while Hg and Pb have high loadings on PC3. The elements highly loaded on PC2 and PC3 are likely associated with pollutants from atmospheric transportation. Together with enrichment assessment, the investigated plants have a great potential for monitoring atmospheric Cd, Hg, and Zn pollution in Ny-Ålesund, and D. angustum and D. caespitosa are the more sensitive species. The results would be of significance for monitoring element contamination in the pristine Arctic environments using the bioindicator plants.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3