Real-Time Flood Warning System Application

Author:

Wu Ray-Shyan,Sin You-Yu,Wang Jing-Xue,Lin Yu-Wen,Wu Hsing-Chuan,Sukmara Riyan BennyORCID,Indawati Lina,Hussain FiazORCID

Abstract

The reliability of weather radar data in real-time flood forecasting and early warning system remain ambivalent due to high uncertainty in Quantitative Precipitation Forecasts (QPF). In this study, a methodology is presented with the objective to improve the flood forecasting results with the application of radar rainfall calculated in three different ways. The QPF radar rainfall forecast data of four typhoon events in Fèngshān River Basin, Taiwan, were simulated using the WASH123D numerical model. The simulated results were corrected using a physical real-time correction technique and compared with direct simulation without correction for all three QPF calculation methods. According to model performance evaluation criteria, in the third method of QPF calculation, flood peak error was the lowest in all three methods, indicating better results for flood forecasting and can be used for flood early warning systems. The impact of the real-time correction technique was assessed using mass balance analysis. It was found that flow change is between 16% and 42% from direct simulation, indicating being on the safe side in case of a flood warning. However, the impact of the real-time physical correction on the water level itself is in a reasonable range. Still, QPF rainfall correction/calculation is more important to obtain accurate results for flood forecasting. Therefore, the application of real-time correction to correct the model water level has a certain degree of credibility, which is the mass balance of the model. This approach is recommended for flood forecasting early warning systems.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3