Super-Stable Metal–Organic Framework (MOF)/Luciferase Paper-Sensing Platform for Rapid ATP Detection

Author:

Martínez-Pérez-Cejuela Héctor12ORCID,Calabretta Maria13ORCID,Bocci Valerio4,D’Elia Marcello5,Michelini Elisa136ORCID

Affiliation:

1. Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy

2. Department of Analytical Chemistry, University of Valencia, C/Dr. Moliner, 50, 46100 Burjassot, Spain

3. Center for Applied Biomedical Research (CRBA), Azienda Ospedaliero-Universitaria Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy

4. Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Roma, 00185 Rome, Italy

5. Scientific Police Centre for Emilia-Romagna Region, 40123 Bologna, Italy

6. Health Sciences and Technologies Interdepartmental Center for Industrial Research (HSTICIR), University of Bologna, 40126 Bologna, Italy

Abstract

Adenosine triphosphate (ATP) determination has been used for many decades to assess microbial contamination for hygiene monitoring in different locations and workplace environments. Highly sophisticated methods have been reported, yet commercially available kits rely on a luciferase–luciferin system and require storage and shipping at controlled temperatures (+4 or −20 °C). The applicability of these systems is limited by the need for a secure cold chain, which is not always applicable, especially in remote areas or low-resource settings. In this scenario, easy-to-handle and portable sensors would be highly valuable. Prompted by this need, we developed a bioluminescence paper biosensor for ATP monitoring in which a new luciferase mutant was combined with a metal–organic framework (MOF); i.e., zeolitic imidazolate framework-8 (ZIF-8). A paper biosensor was developed, ZIF-8@Luc paper sensor, and interfaced with different portable light detectors, including a silicon photomultiplier (SiPM) and smartphones. The use of ZIF-8 not only provided a five-fold increase in the bioluminescence signal, but also significantly improved the stability of the sensor, both at +4 and +28 °C. The ATP content in complex biological matrices was analyzed with the ZIF-8@Luc paper sensor, enabling detection down to 7 × 10−12 moles of ATP and 8 × 10−13 moles in bacterial lysates and urine samples, respectively. The ZIF-8@Luc sensor could, therefore, be applied in many fields in which ATP monitoring is required such as the control of microbial contamination.

Funder

European Union

Spanish Ministry of Science, Innovation and Universities

European Union Next-Generation EU National Recovery and Resilience Plan

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3