Biosensor Design for the Detection of Circulating Tumor Cells Using the Quartz Crystal Resonator Technique

Author:

Alawajji Raad A.12ORCID,Alsudani Zeid A. Nima1,Biris Alexandrus S.1,Kannarpady Ganesh K.1

Affiliation:

1. Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA

2. Department of Physics, College of Science, University of Basrah, Basrah 61004, Iraq

Abstract

A new mass-sensitive biosensing approach for detecting circulating tumor cells (CTCs) using a quartz crystal resonator (QCR) has been developed. A mathematical model was used to design a ring electrode-based QCR to eliminate the Gaussian spatial distribution of frequency response in the first harmonic mode, a characteristic of QCRs, without compromising the sensitivity of frequency response. An ink-dot method was used to validate the ring electrode fabricated based on our model. Furthermore, the ring electrode QCR was experimentally tested for its ability to capture circulating tumor cells, and the results were compared with a commercially available QCR with a keyhole electrode. An indirect method of surface immobilization technique was employed via modification of the SiO2 surface of the ring electrode using a silane, protein, and anti-EpCAM. The ring electrode successfully demonstrated eliminating the spatial nonuniformity of frequency response for three cancer cell lines, i.e., MCF-7, PANC-1, and PC-3, compared with the keyhole QCR, which showed nonuniform spatial response for the same cancer cell lines. These results are promising for developing QCR-based biosensors for the early detection of cancer cells, with the potential for point-of-care diagnosis for cancer screening.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3