Abstract
Zirconium nitride (ZrN) is an important material for the mechanical industries due to its excellent properties such as excellent wear resistance, high hardness, etc. In practical applications, it is necessary to study how to regulate the mechanical properties of materials to meet the needs of different applications. To better understand the influence of vacancies and oxygen on the mechanical property of ZrN, we studied the tensile strength of the ZrN with oxygen atom doping and zirconium vacancy introduction by ab initio density functional theory. The mechanical property changes of modified ZrN in three crystallographic directions (<001>, <110>, and <111>) were calculated. The results show that the tensile strength of ZrN can be increased by oxygen doping at a certain concentration, while that of ZrN can be decreased by the introduction of zirconium vacancy.
Subject
Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献