Structural and Compositional Analysis of CZTSSe Thin Films by Varying S/(S+Se) Ratio

Author:

Zaki Mohamed Yassine1ORCID,Sava Florinel1ORCID,Simandan Iosif Daniel1,Mihai Claudia1,Velea Alin1ORCID

Affiliation:

1. National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania

Abstract

The development of kesterite (Cu2ZnSn(S,Se)4, CZTSSe) thin films for photovoltaic applications is highly necessary, given their composition of Earth-abundant, environmentally friendly elements and their compatibility with established photovoltaic technologies. This study presents a novel synthesis approach for CZTSSe films with varied S/(S+Se) ratios, ranging from 0.83 to 0.44, by a two-step magnetron sputtering deposition/annealing process. The first step consists in an initial deposition of stacked Mo/SnS2/Cu layers, which, upon thermal treatment in a sulfur atmosphere, were transformed into Cu2SnS3 (CTS) films. In the second step, further deposition of ZnSe and subsequent annealing in a tin and selenium atmosphere resulted in the formation of a CZTSSe phase. These processes were optimized to fabricate high-quality and single-phase CZTSSe films, thereby mitigating the formation of secondary phases. Characterization techniques, including scanning electron microscopy, demonstrated a clear correlation between decreased S/(S+Se) ratios and enhanced film densification and grain size. Moreover, grazing incidence X-ray diffraction and Raman spectroscopy confirmed a compositional and structural transition from close to CZTS to nearly a CZTSe phase as the S/(S+Se) ratios decreased. This study advances kesterite-based solar cell technology by enhancing the structural properties and crystallinity of the absorber layer, necessary for improving photovoltaic performance.

Funder

Executive Unit for Financing Higher Education, Research, Development, and Innovation

Romanian Ministry of Research, Innovation, and Digitalization

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3