Electrification of Agricultural Machinery: One Design Case of a 4 kW Air Compressor

Author:

Chen Hsin-Chang1,Rohman Yulian Fatkur1,Ashlah Muhammmad Bilhaq1ORCID,Lin Hao-Ting1ORCID,Sean Wu-Yang1

Affiliation:

1. Department of Bio-Industrial Mechatronic Engineering, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan

Abstract

In response to the global pursuit of net-zero carbon emissions, the electrification of agricultural machinery is becoming a significant research and development trend. This study introduces the overall design of a 4 kW air compressor aimed at achieving a green vision for agricultural machinery. The design focuses on providing continuous and stable power and air output using a lithium-ion battery. Durability and cost-effectiveness are prioritized, with a particular emphasis on the Arduino system for integrating battery and motor systems to withstand harsh conditions and ensure ease of maintenance. A permanent magnet brushless motor was selected as the power source, paired with an optimized pulley to supply the proper torque to the air compressor. The system employs an Arduino-based feedback control sensor for air pressure regulation, ensuring energy efficiency. The primary energy source is a 48 V lithium iron phosphate battery, known for its high energy density and safety. The battery design focuses on system integration, addressing specific environmental discharge requirements. The embedded battery management system provides thermal and lifecycle parameter estimation, guaranteeing long-duration power supply and safe operation under various conditions. Unlike traditional fuel-driven systems, lithium iron phosphate batteries do not emit harmful gases, aligning with environmental standards. System integration testing demonstrated that the air pressure feedback control effectively meets the energy-saving requirements by digitally reducing power output as air accumulates in the chamber. Bench testing confirmed that the system performs as designed, achieving the desired results and advancing the goal of sustainable agricultural machinery.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3