Optimization of Transformer Winding Deformation Assessment Criterion Considering Insulation Aging and Moisture Content

Author:

Wu QianORCID,Hu Yizhuo,Dong MingORCID,Song Bo,Xia Changjie,Yu Boning,Zhang Zhibin,Liu Yang

Abstract

Frequency response analysis is widely used to diagnose transformer winding deformation faults due to its high sensitivity, strong anti-interference capability, and equipment portability, but the results of frequency response analysis can be affected by insulation aging and moisture in the transformer, leading to errors in the diagnosis of winding deformation faults. Currently, there is no effective method to prevent such errors. This paper focuses on optimizing the criterion for diagnosing winding deformations when insulation aging and moisture are present. First, the winding frequency response curves of oil-paper insulation were determined by combining insulation aging and moisture tests of the oil-paper insulation with frequency response simulations of the transformer winding. Next, the winding deformation criterion predicting the likelihood and extent of errors diagnosing transformer winding deformations due to the insulation aging and moisture content is discussed. Finally, the corresponding criterion optimization method is proposed. The corresponding results show that insulation aging and moisture can lead to errors when using the correlation coefficient R criterion to diagnose the transformer winding deformations. Moreover, the possibility of winding deformation errors caused by the change of insulation state can be reduced by introducing the corresponding auxiliary criterion through comparing the capacitance change rate based on the frequency response method and that based on the dielectric spectrum method.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference17 articles.

1. Review of modern diagnostic techniques for assessing insulation condition in aged transformers

2. Electrical-based diagnostic techniques for assessing insulation condition in aged transformers;Issouf;Energies,2016

3. Quantitative aging assessment method for cellulose pressboard based on the interpretation of the dielectric response mechanism

4. Radial Stability of Large Transformer Windings under Multiple Inrush Conditions;Zhang;Trans. China Electrotech. Soc.,2017

5. Information fusion and CS-SVM based research on diagnosis method for transformer winding deformation fault;Gan;Power Syst. Prot. Control,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3